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Absfracr: Total synthesis of (-) (3R,5~,8aR)-3n-Butyi-S-m~ylindolizidin is described in 9 steps ( 22% 
avera yield) from L-praline 

Most reported syntheses’ of indolitidine alkaloids begin with the 2.5~disubstituted pyrrolidine ring 
elaboration. Until1 now our interest in this field has been focused on the (S~p~o~ut~c acid as starting chiral 
material for the construction of tro7ls (or cis) 2,5-dialkyipyrroiidines2. 

The purpose of the present communication is to describe a short and highly diastereoselective route to the 
levogyre (3R.5R,8nR)-3-~~-butyl-5-methylindolizidine 1 starting from (S)-proline as chiral precursor. 

As illu~~t~ in scheme I our synthetic strategy involves two key steps during which the C-5 and C-8a 
configurations should be controlled. It is well established that the 5-substituted indolizidines formation by 
intramolecular catalytic reductive smination leads selectively to cis relative arrangement of C-S and C-8a 
hydrogen atoms regardless of C-3 configuration. The construction of the trans pyrrolidine 2 can be achieved by 
~~er~~l~ve adequate organocopper addition to the hopers ~li~~urn 8 as reported by Wistrand and 
Skrinja?. The absolute configuration at C-3 which should induce that at C-8s is supplied by the natural L- 
proline. 
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Scheme 1 

With these considerations in mind, we started our synthetic work by preparing the aminoether 7 in bulk 
form from L-proline (in 69% overall yield) vicr two protection step#, then anodic a-electromethoxylation 
foliowing the Shone procedure5. Compound 7 was treated with BF&Etz (2 equiv.) at -7PC in order to 
generate the acyliminium 8 which was subjected to the organocopper JCH~HCH~CIYI&X&.I; 2 equiv.) 
addition in dry ethyl ether at -7PC. Analysis of the crude product showed a high diastereoseiectivity for this 
reaction (tra7lslci.s = 96/4). The diastereoisomers separation on column chromatography was done after 
chemoseiective reduction of the ester group which took place without detectable epimerization, leading to 5 in 
63% yield from 7. 
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&agents: a) CIC@Bn/NaOH, OT; b) MeOH/BFJ,OEtz, retlux; c) -2e-/MeoH. -2OOC; d) BF~,OE~~/CHH~‘CH(CHZ)~~~I -78% e) 

NaFSiJCaCl~, THF/EtOH, -5Oc; f’) TsCUNEt>, rt; g) n-PrQLi, -40°C; b) PdClz(PhCNj~-CuCl~~, H,O/DMF; 7OT i) 
H2/pd/BaSO.,. 

Scheme 2 

Carbon-chain elongation of the homochiral alcohol 5 was carried out through tosylation, then cross 
coupling reaction with rr-PrzCuLi to afford compound 3 in 72% yield for the two steps. Oxidation of 3 under the 
Wacker procedure smoothly proceeded to give the methyl ketone 2 in 78% yield. Finally one-pot carbamate 
cleavage and subsequent reductive amination under hydrogen atmosphere and over Pd/BaSO, catalysts in 
methanol gave the desired (-) indolizidine 1 in 86% yield after column chromatography on alumina (hexane- 
CHClJ3: 1). Our synthetic sample exhibits spectral data6 in agreement with the reported ones’. 

Compared to the reported methods, our synthesis of the unatural enantiomer (-) 195B contitutes a 
straightforward and highly stereoselective route to the levogyre 3,5- disubstituted indolizidines. 

Compound 6 is a potential chiral building block for construction of time-2,5pyrrolidines. Further 
transformations of 6 are going on for the synthesis of (-) 195B gephyrotoxin homologues’ having the same 
configurations at C-3$-5 and C-8a chiral centers. 
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